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ABSTRACT
The Law of Varying Actlion enunciated by Hamilton in 13834-
1835 permits the direct solution of the problems of Mechanilcs,
stationary or non-stationary. All problems of statics but only
certain problems -of dynamlcs fall under the clagsification of
"stationary" to which direct solutions haveAﬁeretofore been pos-
sible. It has been impossible to obtain direect solu£ions to non-
stationary problems. through the present state of energy theory
which has been limited for 138 years to Hamilton's principle. It
will be shown that Hamilton's Law permits the direct solution of
non-statiocnary as well as stationar& problems in the mechanics of
solids Qithout any knowledge or use of differential equations._
Whether é system 1s conservative or non-conservative is of no
consequence. Initial conditions, final conditions, and boundary

conditions pose no problem, In this introdycyoyy paper, direct,
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solutions are demonstrated for conservative and non-conservative,
stationary and/or non-stationary particle motion. The generality
of this theory of mechanics, which is free of the constraints im-
posed by the mathematics of differential equations, will be demon-
strated in subsequent papers on statlionary and non-stationary mo-
tion of beams and plates. All of these papers wlll stress three.

major points: 1) simplicity, 2) generality, and 3) accuracy.



NOMENCLATURE

A@ coefficients of power series time variable

Bﬁ' coefficients of power series time variable

c damping force coefficient. May be function of time

. damping coefficient at t = t@\

QT rate of change of damping coefficient

Ca, eritical damping coefficient

E& force at ¢ = té

g | Gravitational parameter. -Takeh as constant in this paper

i,isk, 2 subscripts

k spring‘force coefficient. May be function of time

K@ spring coefficient at € = @6 .

k§ rate of change of spring coefficient

m mass. May be function of time

My, total mass at t - t&

m4 fate of change of mass in varlable mass problem; also

mass number one 1in two-degree of freédom problem
M,N number of terms in truncated power series. Also

degree of resulting polynomial

Q@ general force acting in general displacement direction
RN depéndent space variablé, generalized displacement

T ' kinetic energy, work of inertial forces

T pericd, seconds, T = 2n/w

Qg static thrust of rocket, qg = mTY@

t - real time

t6~ time at which observation of phenomena begins



64, .6/2\

é/f‘o\ > é{a\

time at which observation of phenomena eﬂds
initial velocity at t = t{}

work of all forces other than inertlal forces:

.dependent space varlable; displacement, velocity

initial displacement at t = tg

‘operates on displacement whiie forces are held constant

non-dimensional damping coefficient; T = c/q&
dependent space variablés) angular displacemenﬁ
angular dlsplacement at t ='g6

angular veloclty at t = g@

non-dimensional time, T = t/ty

circular frequéncy, radians/sec., harmonic motion



INTRODUCTION
Hamilton set forth the Law of Varying Action in papers con-
cerning a general method in dynamics, published in 1834 and 1835.4’
When the varied paths were assumed to be co-terminus with the real
path in bothspaéeand time, Hamilton's Law reduced to Hamilton's
principle.éf By the year 1937, when Osgood published his text,
"Mechanics,"g’Hamilton's principle had been established as "...an
independent foundation of mechanics."g’ Osgood simply postulates
the integral,
ty
(T+w)dt
ts

(1)

which he called Hamilton's Iintegral and then obtains the following
equation by varying Hamilton's integral and integrating the kinetie

energy term by parts:

t;
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where generalized coordinates have been used instead of the Car-
tesian coordinates used by Osgood, and where 4t has been set equal
to zero at the ocutset. Following Hamilton, Osgood assumes all of
the Gq@ to vanish at qs\and uT3 i.e., the end points of the var-
ied paths are postulated te be co-terminus wilth the real path;
thus, the first term on the right vanishes. The integrand of the
second term on the right is the equations of Lagrange which are

known to vanish. Eg. 2 then reduces to Hamilton's prineiple,
)



t
SI (t+w)dt = O €3)
1 9. : .
where it is understood that W is the work of both conservative and
non-conservative forces.
When it i1s observed that Lagrange's equatlions vanish whether
or not the Gqﬁvanish at Q6'and tT’ eq. 2 results in the mathe-
matical expression for the Law of Varying Action wheré §t has been

set equal to zero for the Newtonian and/or Lagrangian mechanics to

be discussed herein,

1N |
Sg (Trwide - IT S%] (4
ts to\ _

N9te that the zero on the right hanq side of eq. 4 results from
the fact that nature requires the equations of equilibrium to _
vanish as_observed by Newton. It has nothing to do with the proof
in variational calculus that the integral is an extremum. The
meaning of eg. 4 1s then quite clear,

"A particle or a system or particles

will follow a path and/or assume a

configuration such that the equatlon,

3] (Tew)dt - 5%]

is satisfied.



Another interesting point 1s that the integral on the right
hand side of eq. 2, when taken alone, is identical tc the result
obtained when Galerkinkt method is applied to Lagranges equation.
Here, without any reasonings as to setting fhe welighted error |

equal to zero, it is seen that the eqguation,
i
j (d ot - }—Ti_ - QL\S‘})}. dt=0 (5)

vanishes if and only if eq. 4 vanishes. Thus, the Ritz% method
of solution correctly applied to eq. 4 can readily be shown to be
identical to the Galerkin method applied to the differential equa-
tions of Lagrange or Euler-Lagrange, as in eé._5. Although the
Lagrange or Eulef—Lagrange equations are equally avaiiable from
eq. 3 and eq. 4 it is well known that the direct solution method of
Ritz cannot be applied to Hamilton's pringiple with the same gener-
ality with which Galerkins method can be applied to the differen-
tial equations of Lagrange or Euler-Lagrange.
It has been obvious to competent researchers that something

is wrong somewhere. Bisplinghoff and Ashley on p. 36 of Ref. U,
identify the problem, |

"No difficulty is encountered when Lagrange's equa-

tions can be constructed, for these are differentlal

equations which may, in principle, be integrated

from instant to instant. But the gquestion of how

to handle the upper limitiﬁ}during direct appli-

cation of Hamilton's principle is a more subtle one."



The wording of this statement"impiies ﬁwo things: 1) that
it may not be possible to construct Lagrange's equations for a
physical system from Hamilton's principle and 2) that Bisplinghoff
and-Ashley did not have the slightesﬁ sﬁssicion that the problem
lies directly in the concepts with which Hamilton's principle
has been passed along for 138 years.

Fung, p. 318, Ref. 5, arrives at a restricted form of Hamil-
ton's Law for a deforméble body,

"In some applicstions of ﬁhe'dirsst method of calcu-
1ation‘it is even desirable to liberalize the vari-
ations Sua at the instant'@a and t4 and use Hamilton's
principle in ths variational form (4) which cannot be
'expressed elegantly as thelmimimum of a well-defined
funetional. On the other hand,'such a formulationl
ﬁill be accessible to the dirsct methods of solution.

On introducing (%), (7), and (1C), we may rewrite
eq. (4) in the following form : o :
(a3 5 (U -K+AYE = j IF SULdVdt +

[ T suidsdt + [ radsudv]ly

.

FPirst, Fung's eq. (13)_15 not Hamilton s princlple. Be-
:cause of the last term and the concepts under which it was derived,
it 1s a very restricted form of Hamilfon's Law. S3Second, Fung gives-
‘no indication as to how the bfqblem of the-upper iimit, ET’ as
pointed out by Bisplingfhoff and Ashley, 1is to be treated. Third,

"this writer 1is not aware of any'sudcessful attempt to achieve a



direct solution to any non-stationary problem of mechanics by the
use of Fung's concepts and his eqg. (13). For stationary problems,
his eq. (13) reduces immediately, as does Hamilton's Law, to Ham-
iiton's principle.

The lack of generality of the direct solutions obtainable
from Hamilton's principle may have uhdermined confldence in the
écburacy obtainable for sucp solutions. The writer's experience
with the literature indicaﬁes that such is the case. This prob-
lem is alsc implied by Fung's beginning sentence on p.‘3365; "If
we try to approximate...". This implies that we may not be able
to approximate and would discourage one froﬁ trying. A sequence
of papers on non-stationary motion of particles, beams, plates, and
shells will demonstrate that Hamllton's Law will yield answers with
almost unbelievable simplicity and accuracy. The breadth of the
problems, both stationary and non-stationary, will serve to demon-
strate the generallty of Hamilton's Law when applied with the
proper concepts. ' ;

It is the purpose of this paper to demonstrate the application
of Hamllton's Law to achieve coﬁpletely general solutions to
stationary and non-stationary particle motion problems by direct
application of eq. 4. To enable this to be accomplished with great
simplicity, two well known observaﬁions are made:

(1) The path of any mass particle through space-time is con-
tinuous; i.e., no particle of matter can occupy two points in
space at the same instant in time. |

. (2) The slope of the space-time path of any particlé is

continuous. ' g



Thus, the space-time path of any particle of matfer 1s
continuous with continuous firét derivatives. This is pre-
cisely part of the requirement for admissible functions when
using the Ritz method in conjunction with stationary problems
in the theory of elasticity.é}

To introduce the simplicity of the application, only linear,
one and two degree of freedom particle motion will be treated 1n

this paper. Many degrees of freedom are treated in deformable

body problems.
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~NE DEGREE OF FREEDOM

Consider a particle of constant mass‘on whigh'aéts a
linear restoring force, k(t)y, a linear viscous damping force
c(t)&' and a force that is a specifiéd function of time F(t). In
dther words, thls 1s the linear fofced—dampedfspring-mass system
for which the differential equation is well-known and to which
general solutions for comparison of resuits may be-feadily ob-
tained from the differehtial equation. By substituting the kin-
etic energy and the work of the préscribed forces into eq. 4 and

taking the variation, one obtalns the equation,

rti ‘ ' Ati .
f*_\{"‘%%‘& ”'(F“’*‘k"“a)stﬁ}dt -wmysyli =0 ©®

The convential procedure at this'point_is to,derive the-dif—
fefential equation from which the_solution may be obtéined. The
purpose-of this paper, however, is to dempnstraterthat the solu-
tion may be obtained without any feference to or
knowledge of differential equations. By virtue of the fact that
‘the time-space path is continuous with cbntinudus first deriva-
tives, it is possible to use as an admissible functioh a siﬁple

truncated power seriles,

.- o
‘ﬁ = Yo + Vo + 22 Aict;

=2
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Convergence is assured by Weirstrass‘ theoremié’ Note that no
concept of the shape of the time-space path is necessary.l The
power series must satisfy the specified displacement and velocity
at ¢ = Qakbut not at t‘= gT. The displacement and veloeity at QT
cannot in general be known in advance because they are the resuit
of both the initlal conditions and the time history of the forces
acting between Qﬁkand QT' By the use of constgaints, conditlons
can be, of course, imposed at ta\

In eq. 6, m, k, and ¢, may be, any one or all, functions of
time. However,ffor this example, assume these parameters to be
constant. Put eq. 6 into more convenient computational form by
non-dimensionalizing. Let, t = t4T and divide by m/tg®. Let the
instant in time; t4 at which the observatlon begins; be Q6‘=Vo.

"Eq. 6 becomes,

\ | . L
LHS‘% - &g Sy -\%%"%5? + TVF @) Sua-}u\t
- 4841, =0 (M)

Now the admissible function is simply,

N 1
4= o+ VorT ¥ 2 MT (8)

=2

Substitute eg. 8 into eq. 7, note that the integral of the sum
equals the sum of the integrals. Integrate (for arbitrary func-

tions, numerical integration is used) to obtain a set of algebraic

12



equations. These equations expressed in matrix form are,

T B Sy g | O
L+3-I Mmoo br oy ™ Lejtr ) A
-—t-}:'{ ey }+{ (v Kig)y 2 K3y,
" LF&‘TMAT T T D (9)

Lyy= 2,3,-- N

Ed. 2 constitutes the general splution to the system in that the
time-space path yielded by the solution to this matrix equation

is the sum of the particular and complementary solutions as would
be obtained from the differential equation. Note the initial
conditions as well-as the damping coefficient appear in the non-
homogeneous term. Wheh these parameters, along with F(UIT) and %,
are specified, the solutlon may be obtained. In particular, note
that even with ¥ = 0, the equaticns are not homogeneous as in the
case of the differential eguation.

ET is arbitrary. However, it is kept relatively small with
the understanding that a longer period of time can be examined
simply by taking the final conditions as calculated for one inter-
val as the initial conditions of tﬁe next interval. It should be
emphasized that the number of terms required in the truncated power
series is not the important criteria from a practical viewpoint.
The computer time required for soiutions is the important criteria.
Ten terms in the time variable have been found to be sufficient
for all non-stationary problems of particles, beams, and plates
treated to date. With this number of terms in the truncated power
serles, the computer time for every case of single degree of

freedom particle motion was

13



below the minimum amount ($1.68) charged for the computer and the
accuracy, as will be shown, was far above expectation. |

Both non-stationary problems and simple harmonic motion
can be treated with equal ease. It may be of interest to point
out that if F(tﬁx), c, and Vé\are set equal to zero, eq. 9 will
generate a cosine curve. If F(@TT), ¢ and gﬁ\are set equal to
zero, eq. 9 will generate a sine curve. These, of course are pre-
cisely the same functions as defined by the differential equation
of the simple spring-mass system. The important point to be made
is thisg without any knowledge of the mathematical functions in-
volved in the answer, eq. 4 generates from the power serles what-
ever function that is required to yield the scolution which, in
the case of particle motion, is the time-space path. For a de-
formable body, it is both the time-space path and configuration as
will be demonstrated in subsequent papers.

Convergence is not only a function of the number of terms
used, but is also é function of the complexity of the motion within
the interval §8~to @T“ Since Q@\is arbitrary, it may be chosen as
some arbiftrary number or as some characteristic time of the system;
é.g., the period or a fraction of the period of one of the free
vibration modes. Further, sufficient accuracy must be utilized in
the calculations to insure accuracy of the results. Although many
problems may be solved and the exact answers obtained by hand cal-
culation through the use of rational numbers or by use of eight
place arithmetic in the computer, fourteen to sixteen place arith-
metic (double precision on the IBM 370-165 computer) is standard

for this work.
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Table I glves the results of a study of the aécuracy obtain-
able from eg. 9 ﬁhen F=¢ = V6\= 0. ‘The exact answer is the
cosine function. The point (any pointlcould have'Been used) chosen
for'compérison is CoswtqT= l-'r- . The results show the extreme
acpuracy obtaihable for three values of N, two values of t4 and
fof l6~place arithmetic. and 32-p;ace'arithm¢tic; Few practical

problems require the accuracy of calculatioﬂ that is aﬁailable.
Solutions to four lineér, one-degree of freedﬁm prob-

lems will be demonstrated:

1) Step forcing function with damping..

2) Polynomial forcing function with dampiﬁg;

3) The rocket problem”fvariable'mass).

4} Step force acting on a variabie mass with vafiable
damping and variable resisting férce.‘

These examples, except for the last, were chosen because
exact solutions may readily'be obtained from the differential
‘equation fof comparison of resplts. _The powef:of ‘Hamilton‘s
Law is-illﬁstrated with the last examble, however, where the so-
_lution 1s obtained with the same ease by the use of Hamilton's
Law as is the solution to a simple harmoni¢c motion problem. The
same statement cannot be made relative to the solution to the
differential equation. Even in those cases wﬁére the differen-
tial:equation cannot be solved,_it is readily.available from
Hamilton's Law and the accuracy of the direct solution can readily
be checked »if desired ,by substitution of the direct solution into

the differential equation. 15



EXAMPLE 1I. STEP FORCE WITH DAMPING, 4 = @@‘= 0

Various solutions, including the exact solution to this prob-
lem by the use of Laplace transforms 1s given on pages 662-672 of
Ref. 7. There a finite difference solution by Houbolt 1is also

given. The exact solution as given in Ref., 7 is,

~23. .
..&K/;;h = 1.0 - @ €3 [m(m.?‘l‘isho.toos sun (l‘l-ﬁ‘l‘lsﬂ - (10)

where,
s-..-.-“q-t' /?-(\ - C"L)\l{?-' 3 T = 't/'t,l
ti= W/RO-5Y)/m)

Because of the accuracy of the direct solution, it is neces-
sary to show the comparison of the numbers obtained in tabular
form rather than plotted curves. Fig. 1 shows the results in both

forms.
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EXAMPLE II. POLYNOMIAL FORCING FUNCTION WITH DAMPING

A more difficult problem than the preceding, frém the stand-
poipt of the differential eduation; is a forcing functicn varying
as some arbitrary function of time. PFor this exampie, the force
gnd the parameters are arbitrarily specified to be, o

F=0 okt +Cqtird)
3b\¥ Vo= 0O
t)= 0.25
tp= T /KOU-5%)/m ]'/'?"
Citi= —o0.7229
Cati = j 024

The exact solution is found to be,

% K/Es= 6.1207 ~ ©.0934 T -0.975%4 ’C;"—. 6. 63100 T

- ‘ -Q. 815 T. o | . .
tlLozé ™ - € T [o.rga7ca-a-rr': +0.0/69 SUwTTTJ (11)

- Pig. 2 shows a comparison of the direct‘solﬁtion to the exact

sclution..
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EXAMPLE III. THE ROCKET PROBLEM (VARIABLE MASS)

The particular example given here may be found in several
textbooks, in particular, Ref. 7 and Ref. 8. When the gravi-
tational force field, g, the burning rate, md, and exit velocity,

Y@J are taken to be constant, eg. 6 becomes:

t-i + . .
[th{(m&—mmga»& = (My-m£)g8y + m _(""e-“‘ﬁ)s‘ﬁ—k & (12

4.
—{Un&—nnt]%S%\tw

= 0
The set of algebrale equations resulting from non-dimension-
alization of the above equations and the substitution of eq. 8 with

A
Vg = Y6~= 0 are, in mat}x form,

[m,g,_i_g_l;_i)..m‘._t‘jm-i.; {A;-}: {(M%’—- Mﬁg} (13)

Ll Lvy 3+| el
When the initidl mass; Mg, the static thrust, T@: and the rate of
maés change,mi, are specified, the time-space path (one dimen-
sional motion in this simple case) may be found. The result for
one particular choice of parameters is shown 1n Fig. 3 where the
velocity obtained by differentiation of the direct solution is
compared to the velocity from a first integration of the differ-

ential equation as gilven in Refs, 7 and 8.
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EXAMPLE IV. FORCING FUNCTION APPLIED TO A SYSTEM WITH VARIABLE

MASS, VARIABLE DAMPING, AND VARIABLE SPRING FORCE

In a general problem of this nature, numerical integration
1s used to evaluate the maé%x elements in the event that the inte-
grands are defined by, say, curves generated from test data.
However, to illustrate the generality without getting into such
detalls, the following functions are assumed:

My = me-mt L e(tl= G+ Qi
KiE) = Kax Kyt
F = ng\‘-_ mi‘\‘.ﬁ ( /0\ m’t) %

The mataix equation obtained from eq. 6 is,

. T- i ;,‘,+

\*‘b"" S i.-i-'b-l-l

't m,gl Tc_-, + CaYp +i£°tA¢ + _b3 le +¥sVs L —-m "-"'\K‘V‘
o £ 45.\%3.___% +4;; ™ Ve (14
{ S+ 0 é+2 ' ot 3 . )

-LJ'&= a‘SJ"'JN

Note that example IIIis a special case of this example. Fig.

4 shows the resulting displacement and véiocity for an arbitrary
choice of parameters. No solution to the differential equation

was obtained in this case; but, substitution of the direct solution
for y,c'y and y into the differential equatioh showed equilibrium of
the forces to be satisfied with the same general'accuracy as in the

preceding examples. The percentage error is shown for two points

in time on Fig. 4.
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TWO DEGREES OF FREEDOM

For the sake of brevity, only two examples of two degrees of
freedom will be presented. Both are classic problems. The 4if-
ferential equations, but not necessarily the solutions, may be
found in any téxt on vikration theory. The problems are,

1) The spring coupled pendulum, Fig.-S

2) The double pendulum, Fig. 6

Small angles are assumed at the outset. Non-linear motion
will be treated in separate papers.

When the kinetic energy and work terms for the system with

coordinates and forces acting as shown in Fig. 5, are substltuted

into eq. 4 with,

6,;\= sfﬁ'ﬁ“ + é,l'af‘:,-'i\’t T i Af:rt\y ’ (15a)
(9 .
. : R
O1= 05 +05,HT > Bp TV (15b)
k=2 .

’ R
a coupled magix equation results,

(g
;?
o
=
-
>

Bty Rl B

The madﬁx elements are given in the appendix. Although both
damping and forcing functions can easily be included as in the

next example, they have been omitted here to give a conservatilve

2Q.



system for whichlthe free vibration frequenéies'ana'modes ir
desired could be found from the assumption of simple.harmonic
motion and the resulting eigenvalue problem; becaﬁse, aé 1s well
known, a stationary solution exists. However, the ébove equation
ylelds the solution directly without any assumption of SHM,'and
no eigenvalue is involved. To achieve the m‘ot"ion of this system.
in eithef‘one of its two natural modes iﬁ the lébofatbry, one must
know the answer in advance, so that one cén release the system in
precisely the configuration that exists at the instant that every
particle in the system woﬁld have zero_velbcity; or one.must im-
paft precisely the correct velocity to everﬁ partiecle wheh that
particle is in the precise position at which the imparted velocity
would be the correct value. If such-eoﬁdifi@ns are known in ad-
vance, and are put in the above madﬁx equaﬁion_as initial COIl-
ditions, simple harmonic motion ih the mode corresponding to the
initial conditions will result from the calculation. In general,
hoﬁever, it is much more practical to prescribe an'initial condi-
- tion, whatever it may be, aﬁd'calculate directly the resulting
motion. | | |

Fig. 5 shows the solution for an arbitrary choice_of para-
meters when the initialrcoﬁditions arve taken to be Gin = .08 rad.;
'&{b = é{} = é{h % Q. Anyone Who has ever observed the motion of
sucb,a pendulum system, will recognize the energy exchange in the
.calcﬁlated displacement curves to be precisely as observed in the
physical system. If one calculates the energy, it will be found to

21



be the same at every instant. The accuracy of the solution
may also be judged from the repetitive amplitudes as the energy
is exchanged'between the penduluhs with on-going time.
2) The Double Pendulum
_ When thé kinetle energy and work of the moments for the
double pendulum shown in Fig. 6, are substituted into eq. 4

with

A= O ¥ Oty T + \%\2 AT (15a)
R=1

the maﬂ&x equation 1s precisely of the form as the previous

example but the maé@x elements are not the same,

TG ) A

(a7)
K L [ B

The maéﬁx elements are given in the appendix for the case where the

dampling and spring coefficlents are taken to be constant.

To demonstrate the versatility and power of Hamilton's Law,
one half wave of a sinusoidal moment wasapplied to the;second mass
with no damping in the system. The half perlod of the sinuscidal
moment was taken to be .0l seconds. Fig. 6 shows approximately
,twd cycles of the resulting moticon at which time another sinus-
cldal moment of the same magnitude and duration was applied to the
second mass in the opposite direction, drastically decreasing the

amplitude of the motion. Had this energy been put in at a

22



different instant, the amplitgde could have been increased dras-
tically. The initial conditions and parameter values are shown
in Fig. 6.

To see the effect of damping, Fig. 7 shows the same sinus-
oidal moment applied to the system at t=o in which damping is
present. The parameters are as listed in Fig. 7. The value of
damping chosen to act on the second pendulum was quite high and
appears to be slightly above critical for the second pendulum.
However, the first pendulum has crossed the zero reference line
Just'before a slnusoidal moment, opposite in direction to the
first, is again applied. This time, energy is added to the
system by this moment instead of being dissipated as in the
previous examplé, Fig. 6. '

No detall on the initial motion during application of the
force 1s available from Fig. 6 or Fig. 7. However, the response
during this interval, t@\to QTJ must be accurately calculated
because the conditions at the end of this period are taken as
the initial‘conditions for the calculation of the motion over the
next interval Q6\t0 tTf Fig. 8 is p;otted to a scale that shows
the very beginning of the motion durlng appllcation of the moment.
This feature of Hamilton's Law, i.e., being able to take t}-ts
arbitrarily small, permits the caleulation of the initial motion
and wave travel in beams‘and plates as will be demonstrated in
subsequent papers. Fig. 8 shows the initial motion curves with

and without damping. Damping, whether below critical, critieal,

or above critical 1s of no consequence in the calculation.

a3



Hamilton's Law,'prdperly applied, yiélds the'solutién for whatever
forces that act on or within the system without second guessing and
without prior knowledge of what the solution has td be, The
accufacy may be checked at any time by simply substituﬁing into

the differential equations. These equations are alwéys readily
available from Hamilton's Law withputArégard'to thé.theory of

funcetionals as set forth in the variational caiculus.'

2i)



CONCLUSION .

It has been shown that, contrary to the state of-ehérgy
theory found.in textbooks and in thervériational célcﬁlus,,direct
solutions to non—stationafy particle'mofion may be obtéined through
application of Hamilton's Law for both conservative and non-con-
sefvative systems. In fact, no differentation needs to be made
as to whether a system_is conservaﬁive, non-donservative; sfa-
tionary, or non-stationary. Cdnstraints were not treated ex-
plicitly in this first introductory péper;'but; future papers will
treat both holoncomic and non—hoionomic systems without identifi-
cation'énd without benefit of mentibning Lagrangian multipliers.

Only linear systems willl be treated in the fifst‘sequence of
papers; but, this work developed from a'stﬁdy of what one might
suppose to be a totally unrelated stﬁdy of thermally stressed
plates subjected to non-linear large deflectiohé. wheh the s0-
lution to that problem was finally attained, the méaning of
Hamilton's Law as a means of achieving direct solutioﬁs to the
problems of mechanics had been discovered (or rediscovered?). This
.non—linear work has been temporarily set aside, but will be offered
for publication when 1ts logicai placé in a sequence-of papers on
-the subject has been reached.

it. should be pointed outthat arllntegratlon by parts of the
. kinetic energy with respect to time in Hamilton' 5 Law will yield
the inertia forces and will cause the term, aT/Q% S B J ,
'to cancel from the equation, leaving Hamilton s Law prec1sely in
the form obtained when Galerkln.s procedure is 'applied to the dif-

ferential equation of a particle. This result is also precisely
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that obtained from Hamilton's Principle when, following an inte-
gration by parts, the term,%%;S%{]t‘ , 1s arbitrarily set

equal to zero because "... the endigoints must be co-terminus in
both space and time":g' The result, from which direct solutions

to non-stationary problems may be obtained is, of course, no
longer Hamilton's principle but eq. 5, which is completely equiva-
lent to Hamilton's Law. When independent space variables are
involved, as in deformable body problems, the application of
Gaierkinﬁsmethod applied to the differential equations is subject
to constraints not found in the application of Hamilton's Law;

€.g., the treatment of the boundary conditions which will be

discussed in subsequent papers.
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APPENDIX -

-

The Matrix elements for the two degree of freedom spring

coupled pendulums are:
Cly = = m L0/ G- 1) =1 (KR mig 24} /L §1)

Digj = KRS/ + '+ 1)

EXy = Kh‘-‘%ﬁf/uw»f 0

Fep = —maly k(k-1)/Chak —1) - éf-i?'(K W+ migly )/ (Rede)

Cr«—;\ = ‘f-‘;?[ Rh (B, — 84) — mi.%‘ﬁ-.je..‘o} / Ly+1)
T4 [_Kh‘"-"'[ 10~ 055 ) — ml% L é,‘a /LS“’ 2)

H,j;; = t,;'-’_-"’[xh%‘(e:‘b.f ©10) .-m.',_%ﬁ.;z_eu /la+1)

+ Jq,i,?"[& WY (®.h.- 643) - mfa.gi.‘zé ::o] /(U+2.)
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The Matrix elements for the forced, damped, double pendulum

with springs are:
I = ~lmirma) LEL-0DEALey=1) = (6% SR L /i)

- [K-t"‘ Ko + (my+ma) %«l'at-;‘/(i-‘—é +1)
T\;E = myL, Ry 3\4 Avvk=-1) + c-,_-i;-| R/(y+R) + Kit?'/li-vh-r V)
KC.L =m; 4Ly Lk /(.‘wr.l-—t) + c'.',_t_-"n, /Liv L) "‘Kit'f'/[l‘rl-fﬁ

Lo = —madiklk-1) /lke£-1) = eyt b /e 4)
= (Ra +maa ) /(ke b+ 1)

.- | : . <’ ) - ,
Pfi\ = L (M, -M2) T80 + 1,0, M 225 —‘C_‘u Y_( G¥eD B, + Oy

-+ (K,i\'i’ K.‘z.) be - Klez‘ + [mrl*m'L) 8 'tkl ela/(}'f l)
- Y_lK-i*r K1) 65— Kab o '+(m.+m-‘;)%£,é.b] /(gw,)
I . .
Qp = j AT+ Bamid; 22 ~t] {t‘;( b5 B1v) + Kal®2a™ 8i0)
g
+ weg 22070 | [(4+1) =¥ | Kalbu 60)

+’m..e.3.t-; é,‘_,'] /(i+2)
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TABLE 1.

CONVERGENCE

N
Degree of

Number
of Cycles

t,T=T/1+'a¢

t¢=3T/u@/

Polynomial Cglculated b4 error? % error® % errofg’%error@’
16-place 32-place 16-place 32-place
Arithmetic Arithmetic Arithnmetic Arithmetic
Exact, Coswtt = 1.0

10 1 -2, 6x10“\2 8.7x10~ 1.36x10°%  6.5x1072
10 10 -6.8x107%  8.9x10T  ~1.38 4.5x1078
10 25 -1.5x10~ 2.3x10 -3.41 1.1x10
12 1 1.0x107%> ~7.4x10~¢
12 10 2.0x107% -5.2x107¢
12 25 1.3x10 -1.3x10 ™
15 1 1.9x1075% 5.5x10°%
15 10 2.1x10° 4 u.OxlOﬁ{
i5 25 1.3x10° 1.1x10~

a. T= 2W/m,w— (k/my=L>

b. % error
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ﬁ&*P

2,(); exact- solutlon

| yk/E =1 -¢€ (cos(19899 s)

18 4 + 1005 5|n(198995))
16 - —exact
' - 010term
14 4 polynomial
12 - Y(0)=9(0)= O

T4 F=1(t) , {=C/C.=1

E displacement ,

a4 " T exact enerqy

T O 0 O

6 4 64336 64367

' 8 15824 15826
44 12 15943 15944

o 16 87132 87134

5 20 46821 46818

S= SQwT/\/1 g t1 wd
Q. '

2 4 .6 .8 1 12 14 16 18 20
T .

o
Fas

D Rad

[
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T
0. .2 4 | 61 | ? | 110
- — exact
F(1) o 10 term
=17 T polynomial
m
-2 l
i <y
s |
Cy
Fi)=F[-.7229 7 + 1.024 7]
—4exact:
yk/F = 1807 - 0934T -.8754 T*- 83173
| +1.024 7% &7 1807 costr )
= +.0169 sin( T)|
R - _ l .
= Wy

E;l 2’/ e .0, E’;/"’EX Y, Pp{.‘e“fﬂ.(./f’ f;gjagv
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2000

‘ Vexact =E/ My L N(molM) -g‘t

velocity

T exact direct

M=msmt
m,=.25 slugs
t m,=-01 slugs/sec.
L=10lb.
lW=(mo+m1t)g |
T:t/t1,t1=6.sec.

velocity

1 812369 812369
2. 2675266 2675265

3. 6933666 6933654 /"
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RHS

y, Tt
v, dtxa 'I'S-stath thrust=101b,, g=322 fi. /sec2
80 i T =Y, Yy=4.sec
VR 4
60 /
, I_/ \ _ .
| 3 . |
401 v - displacement(y)
| . |
§ \ o : *
20); - - Fvg!oc:lty(y)
, \ SN _
o) TN 2/ 3 4 5 T
201 \ / DE=LHS-RHS=€
) * /’f °joerror= € /RHS x 100
_40A " oherror(r=2)=33x10"4

°/oer‘ror‘(‘t‘ 5)= 36x1O -5

>4

B =

chf' L’} 1 (’.' f}y r{:‘:\"’ flr v
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-08

Frg, <

C DR

¥ atT=0,0:08rad

92261 262'30

{ i
/ \
i i
i \
\
[N L/
] ‘ \
T ‘ 1
\
\
\
A |
.\\ !
Ve
| . i4'ft‘ |
o h m,= My= 2.slugs
‘ 17 Mp=esiug
J st w0t
| 0
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torque, ft.ib.

B, radx50.
- 80y

60
40;

g o Ty

TP

‘.'“'/6 p05|t|onatt =Q
i 6 6 Q.

1sl ugo/e 9=6:0

1 X torque 80sinTT
T= Ut1 't.'l Olsec,
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torque, ft.ib.

6, radx 50,
80O

- 609
40

[]
T R T

| -
L 18 positionat t=C,

1 1
e 920

> .92 91_ 92_ O

| damping=5ftlb sec.

| 1slug o torgue=80sinrr 7

T= t/t1 tq- Olsec.
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Step Force With. Damping

Polynomial Force With Damping

The Rocket Probleﬁ

Step Force Wiﬁh Variable Mass, Variable
Damping and Variable Spring Force

The Spring Coupled Pendulum

The Double Pendulum With Forcing

The Double Pendulum With Forcing and Damping

" Initial Motion of Double Pendulum
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